
INFRA:HALT | RESEARCH REPORT

Jointly discovering and mitigating
large-scale OT vulnerabilities
By Forescout Research Labs & JFrog Security Research

Forescout Research Labs
Daniel dos Santos
Stanislav Dashevskyi
Amine Amri
Jos Wetzels

JFrog Security Research
Asaf Karas
Shachar Menashe
Denys Vozniuk

RESEARCH REPORT | INFRA:HALT

FORESCOUT RESEARCH LABS

Contents

1. Executive summary 1

2. Main Findings 3

2.1. What is NicheStack? 3

2.2. Why analyze NicheStack? 4

2.3. Analysis and findings 4

3. An Attack Scenario Leveraging INFRA:HALT 6

4. Impact 9

5. Mitigation Recommendations 11

5.1. For network operators 11

5.2. For device vendors 12

5.3. For the community 12

6. Technical Dive-In #1: An Example of Automated Vulnerability Discovery 14

7. Technical Dive-In #2: DNS-Based Exploitation (CVE-2020-25928) 16

7.1. Vulnerability details 17

7.2. Exploiting the vulnerability 18

The memory allocator 19

Overflowing the heap 21

7.3. The shellcode 24

8. Technical Dive-In #3: HTTP-Based Exploitation (CVE-2021-31226) 25

8.1. Vulnerability details 25

8.2. Exploiting the vulnerability 26

9. Conclusion – Lessons Learned and the Way Ahead 27

9.1. Vulnerability discovery 27

9.2. Vulnerability disclosure 27

9.3. Identifying vulnerable devices 28

9.4. Vulnerability mitigation 31

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 1

Executive summary

1. Executive summary

• In the fourth study of Project Memoria –
INFRA:HALT – Forescout Research Labs and
JFrog Security Research jointly disclose a set
of 14 new vulnerabilities affecting the
NicheStack TCP/IP stack (also known as
InterNiche stack).

• NicheStack is used by several devices
in the Operational Technology (OT) and
critical infrastructure space. Major device
vendors, such as Siemens, Emerson,
Honeywell, Mitsubishi Electric, Rockwell
Automation, and Schneider Electric, were
mentioned as customers of InterNiche, the
original developers of the stack. Due to this
popularity in OT, the most affected industry
vertical is Manufacturing.

• The new vulnerabilities allow for Remote
Code Execution, Denial of Service,
Information Leak, TCP Spoofing, or DNS
Cache Poisoning.

• Forescout Research Labs and JFrog Security
Research exploited two of the Remote Code
Execution vulnerabilities in their lab and
show the potential effects of a successful
attack.

• General recommended mitigations for
INFRA:HALT include limiting the network
exposure of critical vulnerable devices via
network segmentation and patching devices
whenever vendors release patches. Some
of the vulnerabilities can also be mitigated
by blocking or disabling support for unused
protocols, such as HTTP.

• Many of the vulnerabilities were found by
using state-of-the-art automated binary
analysis, which paves the way for future
large-scale vulnerability finding and
mitigation.

• INFRA:HALT confirms earlier findings of
Project Memoria, namely similar
vulnerabilities appearing in different
implementations, both open and closed
source. In fact, INFRA:HALT includes
examples of memory corruption like in
AMNESIA:33, weak ISN generation like in
NUMBER:JACK and DNS vulnerabilities like in
NAME:WRECK.

• INFRA:HALT extends the community
understanding of vulnerability patterns and
issues related to IoT/OT software supply
chains. In this report, we discuss lessons
learned and provide suggestions on what
the community can do to mitigate these
emerging threats.

https://www.forescout.com/research-labs/project-memoria/
https://www.forescout.com/research-labs/amnesia33/
https://www.forescout.com/company/blog/numberjack-forescout-research-labs-finds-nine-isn-generation-vulnerabilities-affecting-tcpip-stacks/
https://www.forescout.com/research-labs/namewreck/

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 2

Executive summary

INFORMATIONAL

A Recap on TCP/IP stacks
and Project Memoria

A TCP/IP stack is a piece of software that
implements basic network communication for
all IP-connected devices, including Internet of
Things (IoT), operational technology (OT) and
information technology (IT). Not only are TCP/
IP stacks widespread; they also are notoriously
vulnerable due to (i) codebases created
decades ago and (ii) an attractive attack
surface, including protocols that cross network
perimeters and lots of unauthenticated
functionality.

Noticing the impact of these foundational
components, Forescout Research Labs has
launched Project Memoria with the goal of
collaborating with industry peers and research
institutes to provide the cybersecurity
community with the largest study on the
security of TCP/IP stacks.

The latest examples of TCP/IP stack
vulnerabilities include:

• Ripple20, a set of 19 vulnerabilities on the
Treck TCP/IP stack disclosed by JSOF in June
2020. Forescout Research Labs worked in
close collaboration with JSOF to identify
vendors and devices potentially affected by
Ripple20.

• AMNESIA:33, a set of 33 vulnerabilities
affecting four open-source TCP/IP stacks
disclosed in December 2020 by Forescout
Research Labs.

• NUMBER:JACK, a set of nine vulnerabilities
affecting the Initial Sequence Number (ISN)
implementation in nine TCP/IP stacks dis-
closed in February 2021 by Forescout Re-
search Labs.

• NAME:WRECK, a set of nine vulnerabilities
affecting DNS clients of four TCP/IP stacks
disclosed in April 2021 by Forescout
Research Labs and JSOF.

• INFRA:HALT, a set of 14 vulnerabilities
affecting InterNiche’s NicheStack, disclosed
in August 2021 by Forescout Research Labs
and JFrog Security Research.

https://www.forescout.com/research-labs/project-memoria/
https://www.jsof-tech.com/disclosures/ripple20/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.forescout.com/company/blog/identifying-and-protecting-devices-vulnerable-to-ripple20/
https://www.forescout.com/research-labs/amnesia33/
https://www.forescout.com/company/blog/numberjack-forescout-research-labs-finds-nine-isn-generation-vulnerabilities-affecting-tcpip-stacks/
https://www.forescout.com/research-labs/namewreck/

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 3

Main Findings

Figure 1 – NicheStack components [readapted]

Figure 2 – NicheStack product offering [from nxp.com]

2. Main Findings
2.1. What is NicheStack?

NicheStack (also known as InterNiche stack) is
a proprietary TCP/IP stack developed
originally by InterNiche Technologies and
acquired by HCC Embedded in 2016. The
earliest copyright messages indicate that the
stack was created in 1996, although InterNiche
was founded in 1989. The stack was extended
to support IPv6 in 2003.

In these more than two decades, the stack was
distributed in several “flavors” by OEMs such
as STMicroelectronics, Freescale (NXP), Altera
(Intel) and Microchip for use with several
(real-time) operating systems (RTOS) or its own
simple RTOS called NicheTask. It also served as
the basis for other TCP/IP stacks, such as
SEGGER’s emNet (formerly embOS/IP).

Figure 1 shows an overview of the components
of the stack, including the IPv4 and IPv6
versions. These components were packaged as
different product offerings by InterNiche: IPv4,
IPv6, IPv4/v6 and Lite, as shown in Figure 2.

SSL HTTP Multicast Syslog

Telnet, FTP

Menu System

SNTP

RTP

e-mail

SNMP

DHCP Server

TCP / UDP

IPv4 &/or IPv6

OS Ports & Device Drivers

Operating Systems

IP Sec

SSSH

(& more)

DHCPv4 Client

DNSv4 Client

DHCPv6 Client

DNSv6 Client

NAT, RIP PPP, PPPoE

Security Device Management Application Support Network Utilities

https://ww1.microchip.com/downloads/en/Site_Resource/NicheStack%20IPv4-ProductBrief.pdf
https://www.nxp.com/docs/en/supporting-information/TCPIPSTACKOVR.pdf
https://www.newswire.com/news/hcc-embedded-acquires-networking-business-of-interniche-technologies-to-5036629
https://doc.xdevs.com/doc/ALTERA/DK-AGX125/examples/board_update_portal/software_examples/bsp/ucosii_net_rozipfs/iniche/src/h/net.h
https://doc.xdevs.com/doc/ALTERA/DK-AGX125/examples/board_update_portal/software_examples/bsp/ucosii_net_rozipfs/iniche/src/h/net.h
https://www.automation.com/en-us/articles/2003-1/ixxat-automation-introduces-embedded-tcpip-stack-w
https://www.automation.com/en-us/articles/2003-1/ixxat-automation-introduces-embedded-tcpip-stack-w
https://www.electronicspecifier.com/products/design-automation/stmicroelectronics-delivers-free-tcp-ip-stack-for-str91x-designers
https://www.nxp.com/products/processors-and-microcontrollers/legacy-mpu-mcus/32-bit-coldfire-mcus-mpus/coldfire-microcontrollers/coldfire-v2-mcus/interniches-coldfire-tcp-ip-stack:COLDFIRE_TCPIP
https://www.intel.com/content/www/us/en/programmable/products/processors/design-tools/embed-partners/ni2-network-stack.html
https://www.intel.com/content/www/us/en/programmable/products/processors/design-tools/embed-partners/ni2-network-stack.html
https://ww1.microchip.com/downloads/en/Site_Resource/NicheStack%20IPv4-ProductBrief.pdf
https://www.nxp.com/docs/en/supporting-information/TCPIPSTACKOVR.pdf
https://www.nxp.com/docs/en/supporting-information/TCPIPSTACKOVR.pdf
https://forum.segger.com/index.php/Thread/1099-DNS-CLIENT-UPDT-support-is-incomplete/
https://forum.segger.com/index.php/Thread/1099-DNS-CLIENT-UPDT-support-is-incomplete/
https://www.segger.com/products/connectivity/emnet/

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 4

2.2. Why analyze NicheStack?

We chose to investigate NicheStack because of:

• Its known uses in the Operational
Technology and critical infrastructure space.
For instance, the stack is used in Siemens S7
PLCS, which are the most popular PLCs in
the world by market share.

• The lack of previous public security research
done on the stack. The only relevant
vulnerabilities we found are mentioned in
Table 1, but they are issues that affect
several stacks, which indicates a lack of
focused analysis on this stack.

This led us to hypothesize that a deeper
analysis could uncover similar vulnerabilities as
those found before in Project Memoria.

CVE ID Description Comment

CVE-2004-0230

TCP, when using a large
Window Size, makes it eas-
ier for remote attackers to
guess sequence numbers

and cause a denial of service
by repeatedly injecting a TCP

RST packet.

This vulnerability affects
several stacks, not only
NicheStack. It is related
to NUMBER:JACK since it
involves TCP spoofing by
guessing sequence num-

bers (ISN). However, instead
of weak ISN generation, it
originates from the use of

large Window Size.

CVE-2019-19300

The stack can be forced to
make resource-intense calls
for every incoming packet,
which can lead to a denial
of service. Variant of Seg-

mentSmack.

This is an instance of the
SegmentSmack vulnerability
that was originally found on
Linux in 2018 and later also

on IPnet/Vxworks.

Table 1 – Previously known vulnerabilities on NicheStack

Main Findings

https://ladderlogicworld.com/plc-manufacturers/
https://ladderlogicworld.com/plc-manufacturers/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0230
https://dl.packetstormsecurity.net/0404-advisories/246929.html
https://www.forescout.com/company/blog/numberjack-forescout-research-labs-finds-nine-isn-generation-vulnerabilities-affecting-tcpip-stacks/
https://us-cert.cisa.gov/ics/advisories/icsa-20-105-08
https://nvd.nist.gov/vuln/detail/CVE-2018-5390
https://cert-portal.siemens.com/productcert/pdf/ssa-102233.pdf

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 5

INFRA:HALT is the result of a combined
effort by Forescout Research Labs and JFrog
Security Research. Forescout Research Labs
brought to the table the body of knowledge
acquired while executing on Project Memoria,
while JFrog Security Research provided its
platform for automated binary analysis and
extensive experience in embedded software
security gained from the recent acquisition of
Vdoo by JFrog.

Table 2 shows the new vulnerabilities we
found. All versions before 4.3 (the latest at
the time of research), including NicheLite, are
affected. HCC Embedded released patches for
the affected versions of NicheStack that are
available upon request.

Main Findings

2.3. Analysis and findings

We had access to two versions of NicheStack
for our analysis: source code of v3 (publicly
available via a website exposing the source
files for an embedded project) and a binary
version of v4.0.1 (publicly available via the
legacy InterNiche website). In those versions,
we analyzed the following stack components
(see Figure 1): IPv4, TCP, UDP, HTTP, DHCPv4
Client and Server and DNSv4 Client. We
performed the analysis by combining manual
and automatic procedures, using the following
tools:
• The source code version was manually

analyzed and fuzzed with libFuzzer.

• The binary version was manually and
automatically analyzed by JFrog Security
Research, leveraging both static and
dynamic proprietary techniques.

https://www.hcc-embedded.com/support/security-advisories
https://doc.xdevs.com/docs/ALTERA/DK-AGX125/examples/board_update_portal/software_examples/bsp/ucosii_net_rozipfs/iniche/
https://doc.xdevs.com/docs/ALTERA/DK-AGX125/examples/board_update_portal/software_examples/bsp/ucosii_net_rozipfs/iniche/
https://llvm.org/docs/LibFuzzer.html

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 6

Main Findings

Table 2 – Vulnerabilities. Rows are colored according to the CVSS score: yellow for medium or high and red for critical.

CVE ID Vendor ID Description
Affected

Component
Potential
Impact

CVSSv3.1
Score

2020-
25928 HCCSEC-000010

The routine for parsing DNS responses does not check the
“response data length” field of individual DNS answers,
which may cause OOB-R/W.

DNSv4 RCE 9.8

2021-
31226 HCCSEC-000003

A heap buffer overflow exists in the code that parses the
HTTP POST request due to lack of size validation. HTTP RCE 9.1

2020-
25767 HCCSEC-000007

The routine for parsing DNS domain names does not check
whether a compression pointer points within the bounds of
a packet, which leads to OOB-R.

DNSv4
DoS

Infoleak
7.5

2020-
25927 HCCSEC-000009

The routine for parsing DNS responses does not check
whether the number of queries/responses specified in the
packet header corresponds to the query/response data
available in the DNS packet, leading to OOB-R.

DNSv4 DoS 8.2

2021-
31227 HCCSEC-000004

A heap buffer overflow exists in the code that parses the
HTTP POST request due to an incorrect signed integer
comparison.

HTTP DoS 7.5

2021-
31400 HCCSEC-000014

The TCP out of band urgent data processing function would
invoke a panic function if the pointer to the end of the out
of band urgent data points out of the TCP segment’s data. If
the panic function had a trap invocation removed, it would
result in an infinite loop and therefore a DoS (continuous
loop or a device reset).

TCP DoS 7.5

2021-
31401 HCCSEC-000015

The TCP header processing code doesn’t sanitize the length
of the IP length (header + data). With a crafted IP packet, an
integer overflow would occur whenever the length of the IP
data is calculated by subtracting the length of the header
from the length of the total IP packet.

TCP App-
dependent 7.5

2020-
35683 HCCSEC-000011

The code that parses ICMP packets relies on an unchecked
value of the IP wpayload size (extracted from the IP header)
to compute the ICMP checksum. When the IP payload size
is set to be smaller than the size of the IP header, the ICMP
checksum computation function may read out of bounds.

ICMP DoS 7.5

2020-
35684 HCCSEC-000012

The code that parses TCP packets relies on an unchecked
value of the IP payload size (extracted from the IP header)
to compute the length of the TCP payload within the TCP
checksum computation function. When the IP payload size
is set to be smaller than the size of the IP header, the TCP
checksum computation function may read out of bounds. A
low-impact write-out-of-bounds is also possible.

TCP DoS 7.5

2020-
35685 HCCSEC-000013 TCP ISNs are generated in a predictable manner. TCP TCP

spoofing 7.5

2021-
27565 HCCSEC-000017

Whenever an unknown HTTP request is received, a panic
is invoked. HTTP DoS 7.5

2021-
36762 HCCSEC-000016

The TFTP packet processing function doesn’t ensure that a
filename is null-terminated, therefore a subsequent call to
strlen() upon the file name might read out of bounds of the
protocol packet buffer.

TFTP DoS 7.5

2020-
25926

HCCSEC-000005

HCCSEC-000008

The DNS client does not set sufficiently random transaction
IDs. DNSv4 DNS cache

poisoning 4

2021-
31228 HCCSEC-000006

Attackers can predict the source port of DNS queries to
send forged DNS response packets that will be accepted as
valid answers to the DNS client’s request.

DNSv4 DNS cache
poisoning 4

https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000010
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000003
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000007
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000009
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000004
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000015
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000015
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000011
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000012
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000013
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000017
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000016
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000005
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000008
https://www.hcc-embedded.com/support/security-advisories/product-security-advisory-hccsec-000006

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 7

INFRA:HALT exemplifies how all the problems
with TCP/IP stacks that we have seen before
in Project Memoria can appear in the same
product. There are examples of memory cor-
ruption issues like AMNESIA:33 (on ICMPv4
and TCPv4, like CVE-2020-35683 and CVE-2020-
35684), weak ISN generation like NUMBER:-
JACK (CVE-2020-35685), and DNSv4 issues like
NAME:WRECK (CVE-2020-25767, CVE-2020-
25926, CVE-2020-25927, CVE-2020-25928 and
CVE-2021-31228).

INFRA:HALT includes remote code execution
vulnerabilities that can be exploited to allow
attackers to achieve different goals based on
their motivations (e.g., infrastructure
disruption in case of nation-state sponsored
attacks). The technical details of the exploits
are discussed in Sections 7 and 8. In this
section, we discuss an example of an attack
that we implemented in the Forescout Cyber
Lab. The attack leverages the DNS-based
exploitation detailed in Section 7. The goal
of the attacker in this scenario is to disrupt a
building’s HVAC system, whose controller can
be reached by a vulnerable NicheStack device
over the network.

An Attack Scenario Leveraging INFRA:HALT

3. An Attack Scenario
Leveraging INFRA:HALT

The attack scenario is shown in Figure 3,
containing the following components:

• External attacker (IP address
192.168.85.70): a malicious actor that
leverages a vulnerable device to infiltrate the
target network and carry out the attack. The
actor is located outside of the local target
network and has access to only the subnet
192.168.1.0/24.

• Device 1 (IP address 192.168.1.21): a
device that runs a vulnerable version of the
NicheStack TCP/IP stack. This is the primary
target of the attacker since CVE-2020-25928
can be exploited against this device because
it sends DNS requests.

• Device 2 (IP address 192.168.2.14): a
Programmable Logic Controller (PLC) placed
in the internal network that controls the
operation of a physical device (industrial
fan). The PLC is the secondary goal of the
attacker since it may contain other
vulnerabilities or simply accept
unauthenticated commands (as is common
in industrial settings). Because the attacker
has no direct access to the subnet where
the PLC is deployed (192.168.2.0/24), the
attacker will attempt to force the vulnerable
NicheStack device that has access to this
subnet to send a malicious packet to the
PLC.

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 8

An Attack Scenario Leveraging INFRA:HALT

• Industrial fan is connected to the PLC,
together with a motion sensor;
whenever the motion sensor is triggered,
the fan starts spinning for several seconds
and then halts. This scenario simulates the
working conditions of an HVAC (Heating
Ventilation Air Conditioning) system, used to

The steps of the attack implemented in our lab
are as follows:

• Step 0: Device 1, vulnerable to INFRA:HALT,
sends a DNS request to the DNS server as
part of its normal operations.

• Step 1: The attacker sends a forged DNS
response containing malicious shellcode
to Device 1.

• Step 2: When Device 1 attempts to parse
the DNS response, its logic is hijacked and
the attacker gets remote control over it.

The device is instructed to establish a TCP
connection with Device 2, the internal PLC
connected to the HVAC, and to send a
malicious FTP packet that exploits a 0-day
in this PLC1.

• Step 3: The PLC crashes, forcing the fan
control to stop working.

A video showing the effects of the attack on
our Cyber Lab is available here.

control the temperature in mission-critical
environments such as data centers or drug
storage systems. The attack will result in a
Denial-of-Service for the PLC. This will halt the
feedback loop between the PLC and the fan
so that the fan will remain in its current state
permanently, effectively disrupting the process.

Figure 3 – Attack scenario on the lab

1 The 0-day in Device 2 has been discovered as part of our research activities, and it is currently under the responsible disclosure process.

https://youtu.be/plgtt1BD-nI

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 9

An Attack Scenario Leveraging INFRA:HALT

Figure 4 shows the network capture of the
implemented scenario. The malicious network
packets are the packets number 2 and 5. We
can see Device 1 performs a DNS request
(packet number 1) and the attacker
immediately responds with a malformed DNS
answer that exploits CVE-2020-25928 (packet
number 2). Device 1 accepts the malformed
DNS answer coming from the attacker, and (as
shown by packets number 3 and 4) the
shellcode supplied by the attacker is being
executed since Device 1 establishes a
successful TCP connection with Device 2 (the
PLC)2 . Finally, Device 1 sends a malicious FTP
message to Device 2 (packet 5), crashing it.

This scenario could be expanded to a
large-scale denial-of-service: attackers could
gain full control over exposed devices by
exploiting CVE-2020-25928 and then make
these devices part of a botnet to carry out a
DDoS attack (Distributed Denial of Service) on
internal controllers.

The internal controllers exploited could be not
only building automation PLCs but also
controllers used in manufacturing plants,
power generation/transmission/distribution,
water treatment and several other critical
infrastructure sectors.

Figure 4 – Malicious network communications (exploitation of CVE-2020-25928)

2 Note that the SYN-ACK packet from the TCP Handshake was not captured and thus not shown in Figure 4.

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 10

Impact

4. Impact
In this section, we try to estimate the impact of
INFRA:HALT based on the evidence collected
during our research, using three main sources:

• A legacy InterNiche website listing its
main customers. According to the website,
most of the top industrial automation
companies in the world, such as Emerson,
Honeywell, Mitsubishi Electric, Rockwell
Automation, Schneider Electric and Siemens,
use the stack. Besides those, the website
mentions a total of almost 200 device
vendors.

• Shodan Queries. Shodan is a search engine
that allows users to look for devices
connected to the Internet.

We queried Shodan, looking for devices
showing some evidence (e.g., application-
layer banners) indicating the use of
NicheStack. As shown in Figure 5, with a
query executed on 08/Mar/2021, we found
more than 6,400 instances of devices
running NicheStack (using the simple query
“InterNiche”). Of those devices, the large
majority (6360) run an HTTP server (query
“InterNiche Technologies Webserver”),
while the others ran mostly FTP (“Welcome
to InterNiche embFtp server”), SSH (“SSH-
2.0-InternicheSSHServer (c)InterNiche”)
or Telnet (“Welcome to InterNiche Telnet
Server”) servers.

Figure 5 – Results for “InterNiche” on Shodan Figure 6 – Results for “InterNiche Technologies Webserver” on Shodan

https://web.archive.org/web/20201022200519/http:/www.iniche.com:80/company/manylogos.php
https://www.plantautomation-technology.com/articles/top-industrial-automation-companies-in-the-world
https://www.plantautomation-technology.com/articles/top-industrial-automation-companies-in-the-world

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 11

Impact

• Forescout Device Cloud. Forescout Device
Cloud is a repository of information of
13+ million devices monitored by Forescout
appliances. We queried it for similar
banners as Shodan, as well as other
information, based on DHCP signatures, for
instance.

We found more than 2,500 device instances
from 21 vendors. The most affected
customer industry vertical is Process
Manufacturing, followed by Retail and
Discrete Manufacturing.

Figure 7 – Device Functions running NicheStack (source: Forescout Device Cloud)

Figure 8 – Devices running NicheStack in each vertical

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 12

Mitigation Recommendations

5. Mitigation Recommendations
Complete protection against INFRA:HALT
requires patching devices running the
vulnerable versions of NicheStack. HCC
Embedded has released its official patches
and device vendors using this software should
provide their own updates to customers.
Below, we discuss mitigation strategies for
network operators, device vendors and the
wider cybersecurity community.

5.1. For network operators

Given that patching OT devices is notoriously
difficult due to their mission-critical nature, we
recommend the following mitigation strategy:

• Discover and inventory devices running
NicheStack. Forescout Research Labs has
released an open-source script that uses
active fingerprinting to detect devices
running NicheStack. The script is updated
constantly with new signatures to follow
the latest development of our research.

• Enforce segmentation controls and
proper network hygiene to mitigate the
risk from vulnerable devices. Restrict
external communication paths and isolate
or contain vulnerable devices in zones as a
mitigating control if they cannot be patched
or until they can be patched.

• Monitor progressive patches released
by affected device vendors and devise a
remediation plan for your vulnerable asset
inventory, balancing business risk and
business continuity requirements.

• Monitor all network traffic for malicious
packets that try to exploit known
vulnerabilities or possible 0-days.
Anomalous and malformed traffic should
be blocked, or at least alert its presence to
network operators.

Table 3 provides recommended mitigations
for each vulnerability.

Table 3 – Mitigation recommendations for specific vulnerabilities

CVE Affected Component Mitigation Recommendation

2020-25928

2020-25767

2020-25927

2021-31228

2020-25926

DNSv4 client
Disable the DNSv4 client if not needed, or block DNSv4 traffic. Because
there are several vulnerabilities that facilitate DNS spoofing attacks, using
internal DNS servers may not be sufficient (attackers may be able to hijack
the request-response matching).

2021-27565
2021-31226
2021-31227

HTTP Disable HTTP if not needed, or whitelist HTTP connections.

2021-31400

2021-31401

2020-35684

2020-35685

TCP

For CVE-2021-31400, CVE-2021-31401, and CVE-2020-35684, we recommend
monitoring traffic for malformed IPv4/TCP packets and blocking them (e.g.,
having a vulnerable device behind a properly configured firewall should be
sufficient).

For CVE-2020-35685, we suggest using recommendations we outlined in our
NUMBER:JACK report whenever it is feasible.

2020-35683 ICMPv4 Monitor traffic for malformed ICPMv4 packets and block them.

https://github.com/Forescout/project-memoria-detector
https://www.forescout.com/company/blog/numberjack-forescout-research-labs-finds-nine-isn-generation-vulnerabilities-affecting-tcpip-stacks/

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 13

Mitigation Recommendations

5.2. For device vendors

Use exploit mitigations. No stack canary
or ASLR mitigations were built into the
SAM4E binary mentioned in Sections 3 and
7. This is common in embedded systems
even nowadays. These mitigations would
make exploitation much more difficult and,
in most cases, impossible without the use of
other information disclosure vulnerabilities.
Device vendors should ship their toolchains
configured to utilize these mitigation
techniques by default.

Use code-auditing tools such as binary
analysis, source analysis and fuzzing.
Some of the vulnerabilities in INFRA:HALT
can be found with modern analysis tools in
a completely automated manner. Device
vendors should employ source code analysis,
binary analysis and dynamic analysis (fuzzing),
as each technique has advantages and
disadvantages for finding security issues.

When implementing well-known
protocols, use well-known security
techniques when possible. CVE-2020-35685
could have been avoided by following the
proposed ISN generation algorithm in RFC
6528. In many well-known protocols, the
security-related questions have been publicly
and thoroughly answered in RFCs and other
documentation. We recommend looking for
these solutions before trying to implement a
new algorithm.

5.3. For the community

As with every supply chain vulnerability,
identifying all impacted devices might require
months or even years, leaving vulnerable
assets exposed for a long time. In the case of
AMNESIA:33, publicly disclosed in December
2020, updates regarding affected devices
have still been published in May 2021, five
months after the initial publication (and eight
months after the initial notification to vendors).
This is because identifying product lines
that might include a vulnerable component,
verifying if any product in the line is affected
and providing a fix are lengthy, manual and
difficult processes.

To facilitate this process, Forescout and JFrog
shared the details of their findings about
potentially affected vendors with CERT/CC, ICS-
CERT and BSI, which coordinated the
disclosure with these vendors. The Forescout
Device Cloud was used to identify devices
that show some evidence (e.g., HTTP banners,
Nmap fingerprints, etc.) of the presence of
a vulnerable component. This information,
when shared with the appropriate parties, can
make it easier to identify vendors that must
be notified during responsible disclosure. In
INFRA:HALT, we identified nearly 200 vendors
possibly affected. Not all of them will be
confirmed vulnerable, since evidence and
fingerprints might lead to false positives.

https://datatracker.ietf.org/doc/html/rfc6528
https://datatracker.ietf.org/doc/html/rfc6528
https://us-cert.cisa.gov/ics/advisories/icsa-21-068-06

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 14

The cybersecurity community (researchers,
security vendors, device manufacturers and
other actors) should work cooperatively to
find better (and possibly automated) ways of
identifying software components of a device.
An example of such a community effort is
led by the National Telecommunications and
Information Administration (NTIA) and has the
goal of creating a common machine-readable
exchange format for Software Bills of Materials
(SBOM). That SBOM format would uniquely
and effectively identify software components.
Having access to the list of software compo-
nents that comprise a software or hardware
solution would allow to clearly establish if a
device is affected by a certain vulnerability by
simply ‘reading’ its SBOM.

This initiative is complemented by the OASIS
Common Security Advisory Framework (CSAF)
and the Vulnerability Exploitability Exchange
(VEX), which both make SBOMs more usable
for defenders. CSAF is a way for researchers,
vendors and coordinators to provide security
advisories in a machine-readable way. This aids
in the efforts of end users and downstream
vendors to react faster on published patch
and remediation information as it becomes
automatable. VEX, on the other hand, allows
device vendors, software providers and others
to explicitly state in a machine-readable way
when they are not affected by a particular
vulnerability, thus reducing the false positives
that are generated by fingerprints. Both, when
combined with an SBOM, allow organizations
to better understand the implications of
vulnerabilities on their products or networks
and take better risk-based decisions.

Mitigation Recommendations

https://www.ntia.gov/SBOM
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=csaf
https://www.blackhat.com/us-21/briefings/schedule/index.html#your-software-isnot-vulnerable-csaf-vex-and-the-future-of-advisories-23707
https://www.blackhat.com/us-21/briefings/schedule/index.html#your-software-isnot-vulnerable-csaf-vex-and-the-future-of-advisories-23707

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 15

Mitigation Recommendations

TECHNICAL DIVE-IN

6. Technical Dive-In #1:
An Example of Automated
Vulnerability Discovery

The automated binary analysis that found
many of the vulnerabilities in INFRA:HALT was
performed on a publicly available demo
version of NicheStack for the
SAM4E microcontroller. The demo binary is a
standard non-stripped ELF image.

JFrog’s platform for security analysis
automatically identifies user input points that
are notoriously linked to possible
vulnerabilities.

As an example, to detect the vulnerable data
path in CVE-2021-31228 (an HTTP server
denial-of-service), the JFrog static analyzer
framework started by identifying a potential
point of user input, the atol()3 call in function
ht_readmsg() shown in Figure 9.

This is automatically regarded as a possible
user input since string-to-integer conversion
functions are mainly used to convert textual
user input data to integers that the program
can work with.

Also, this is cross-referenced with well-known
protocol strings in the function’s proximity. In
this case, the HTTP-related strings give the
system higher confidence that this is indeed
user input coming from the network.

3 Since the ELF was non-stripped in this case, “atol” was identified automatically by name. However, even in a stripped ELF, it can be automatically
identified easily by emulating it and using test-case divination analysis.

Figure 9 – User input automatically detected

http://SAM4E microcontroller.

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 16

Mitigation Recommendations

TECHNICAL DIVE-IN

In this vulnerability, the issue is that contentlen
may be provided by the attacker as a
negative number, which will help evade any
signed comparisons while still causing huge
data copies when treated as an unsigned
integer. In this case, contentlen is stored in the
hp struct, which is then tracked in the program
until the function wbs_post, where it is used
to initialize the total and remaining length, as
shown in Figure 10.

This struct is tracked even further until it
reaches one of the potential “sink” functions,
in this case, a memcpy() call in getbndsrch, as
shown in Figure 11.

Here, len is a value derived from remain_len,
which in turn is derived from contentlen (as
shown in Figure 10).

Since len can be negative and the comparison
is signed, the “if” branch will be taken, and a
huge copy operation will occur, crashing the
device due to invalid memory write access.

Figure 11 – memcpy() sink

Figure 10 – contentlen used in the wbs_post function

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 17

Mitigation Recommendations

TECHNICAL DIVE-IN

7. Technical Dive-In #2:
DNS-Based Exploitation
(CVE-2020-25928)

There are two vulnerabilities in INFRA:HALT
that allow for Remote Code Execution:
CVE-2020-25928 and CVE-2021-31226. These
vulnerabilities enable attackers to remotely
take over the target devices. In this section, we
will focus on CVE-2020-25928: a missing size
check when handling DNS responses, for the
length of the response data. The missing check
leads to an exploitable heap buffer overflow. In
Section 8, we discuss the exploitation of
CVE-2020-31226.

At a high level, to trigger CVE-2020-25928, an
attacker sends a crafted DNS packet as a
response to a DNS query from the vulnerable
device. This is easy to achieve because the DNS
TXID and UDP source port can be guessed due
to CVE-2020-25926 and CVE-2021-31228,
respectively, and the affected DNS client
implementation does not validate the source
IP address of the response packet (so the
attacker does not even need to know the
address of the real DNS server). Therefore, a
man-in-the-middle is not needed to exploit
CVE-2020-25928. A passive sniff of a DNS query
at some point in time will greatly shorten the
number of options for the DNS TXID and UDP
source port,

allowing the vulnerability to be exploited with a
handful of response packets (less noise on the
wire), although a brute force is quite possible
even without an initial passive sniff.

The crafted packet contains malicious
code (“shellcode”) that hijacks the logic of a
vulnerable NicheStack device attempting to
parse it and instructs the device to execute a
malicious action. In the case of the proof-of-
concept below, the device establishes a TCP
connection with another networked device,
which can be used for further exploitation.

The vulnerability is detailed in Section 7.1. The
actual exploitation is detailed in Section 7.2,
and the shellcode is detailed in Section 7.3.

Important note on exploitability: Some of the
technical details of the exploitation are specific to
the physical device being exploited, including the
presence of specific components of the affected
TCP/IP stack and the absence of exploit
mitigations. The details discussed below are
specific to the physical target we used: an
ATSAM4E development board running the public
binary demo mentioned in Section 3. However,
this exploit can be generalized to other targets.

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 18

Mitigation Recommendations

TECHNICAL DIVE-IN

7.1. Vulnerability details

CVE-2020-25928 occurs when individual
resource records (RRs) of a DNS response
packet are processed. Figure 12 shows a
pseudocode excerpt from the dns_upcall()
function that is called whenever a DNS
response packet is received. At line 1, a byte
pointer cp is initialized, pointing to the
second byte of the DNS header of the received
response packet (the dnshdr structure). The
for() loop (lines 5–40) iterates over the
available DNS records and extracts the
corresponding record fields. The variable
records hold the number of records it has
extracted from the DNS header dnshdr earlier.

While individual records are parsed, the
pointer cp iterates over various fields of every
available resource record at lines 8–13. The
functions getoffset() and getshort() are used
to retrieve various fields of the record: type
corresponds to the DNS record type; netclass
corresponds to the DNS record class (e.g., “IN”
for “Internet”); ttl is the Time-to-Live value; and
rdlength is a two-byte field that specifies the
length of the response data that follows.

When the values of these fields are
extracted, the function dnc_set_answer() is
called to retrieve the response data and write
it into dns_entry (this is a pointer to the
dns_querys structure shown in Figure 13).

Figure 12 – An excerpt from the dns_upcall() function (CVE-2020-25928)

Figure 13 – The dns_querys structure (CVE-2020-25928)

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 19

Mitigation Recommendations

TECHNICAL DIVE-IN

dnc_set_answer() accepts a pointer to the
dns_querys structure (shown in Figure 13), the
DNS record type (type), the current byte
pointer cp, and the length of the DNS response
data (here, rdlen). If the current record is a
domain name pointer record (type is set to
12, or 0x0c in hexadecimal), the function will
call memcpy() to write the response data into
dns_entry->ptr_name, as per Figure 14. Here,
the first argument of memcpy() is the
destination, the second argument is the source
(cp + 1 points to the beginning of the response
data), and the third argument is the amount of
bytes to be copied.

Figure 13 shows that the field ptr_name has
a fixed size (128 bytes) and that the resource
data length value is never checked along the
way. The size of the memory copy operation is
controlled by potential attackers, and arbitrary
resource data length value can be specified
directly in a network packet, making the mem-
ory copy write past the buffer ptr_name, up to
65,535 bytes (the size limit for the short-sized
rdlen).

The memory for each dns_entry is allocated in
the heap (using malloc(), this code is omitted
for brevity), and therefore it is a classic heap
overflow vulnerability. In the next section, we
discuss how this vulnerability can be exploited
to achieve Remote Code Execution.

Figure 15 – The RR structure of a forged DNS response packet (CVE-2020-25928)

Figure 14 – An excerpt from the dnc_set_answer() function

7.2. Exploiting the vulnerability

To exploit CVE-2020-25928, an attacker must
forge a DNS response packet that includes
an RR with the structure shown in Figure 15.
This RR may or may not specify the same
domain name that has been requested by the
vulnerable device (e.g., “test.com”); it must
be of a domain pointer record (type set to
0x000c), the DNS record class code must be
set to “Internet” (0x0001), the resource data
length must be set to a sufficiently large value to
cause a buffer overflow and to ensure that the
shellcode is being written entirely (we provide
the value of 401 bytes). Finally, the desired
shellcode must be in place of the resource data.

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 20

Mitigation Recommendations

TECHNICAL DIVE-IN

Exploiting heap overflows involves either
corrupting heap metadata (the data structures
created and managed by the memory
allocator) or corrupting the program data
stored on the heap. For this PoC, we chose
the former approach. Therefore, the shellcode
is specific to the memory allocator used
in the vulnerable firmware, the hardware
architecture and the available functionality
within the vulnerable firmware.

Understanding how the target memory
allocator works is crucial to achieving RCE via
heap metadata overflow. Thus, we sketch the
specifics of the memory allocator relevant to
the firmware and the architecture of our target
below.

The memory allocator

Figure 16 shows how the dns_entry structure
is allocated. The memory allocator used in
NicheStack is very similar to the memory
allocator of newlib4 (the malloc()5 function
is called by npalloc()). Therefore, we will use
newlib to illustrate the inner workings of the
memory allocator used by NicheStack.

The following specifics of the memory allocator
are important for our discussion:

• Memory chunks, which are allocated/free
areas of memory.

• Bins, which are double linked lists of free
chunks. There may be several kinds of bins,
depending on the sizes of the chunks they
can hold.

Figure 16 – dns_entry structure allocation

Figure 17 – The malloc_chunk structure in newlib

4 https://sourceware.org/newlib/

5 https://chromium.googlesource.com/native_client/nacl-newlib/+/refs/heads/main/newlib/libc/stdlib/mallocr.c
(Note that the code might not be exactly the same, but the crucial parts are similar enough.)

https://sourceware.org/newlib/
 https://chromium.googlesource.com/native_client/nacl-newlib/+/refs/heads/main/newlib/libc/stdlib/mallocr.c

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 21

Mitigation Recommendations

TECHNICAL DIVE-IN

Figure 17 shows the data structure (malloc_
chunk) that holds individual free chunks. It has
the following fields:

• prev_size – the size of the previous chunk.

• size – the size of the current chunk. If the
least significant bit of this value is unset, it
means that the previous chunk is free and
can be used for allocation or for merging
with other chunks.

• fd – the forward pointer, which points to
the next free chunk in the double linked list,
used only if there is a free chunk after the
current one in the free list.

• bk – the backward pointer, which points to
the previous free chunk in the double linked
list, used only if there is a free chunk before
the current one in the free list.

The top bin (or top chunk) is a region of heap
memory that holds the topmost free chunk. It
is a single chunk of contiguous free memory,
and it is also the largest free chunk available
for the memory allocator. The top bin is used
when there are no other bins to hold free
chunks of the appropriate size.

The allocation of a chunk is performed by
calling malloc(). The memory allocation
algorithm behind the scenes performs the
following steps (the description is simplified):

• If there is a chunk of memory that has been
just freed, and it is large enough to
accommodate the request, the memory
allocator will use it.

• If not, and there is space at the top of the
heap (top bin), the memory allocator will
create a new chunk out of this memory
region and use it.

• If the top bin is too small to accommodate
the request, the memory allocator will
instruct the kernel to add new memory at
the end of the heap. It will then consolidate
the new memory region (new top bin) with
the old contiguous free chunk (old top bin).
This space will be used for allocation.

• Otherwise, malloc() fails and returns NULL.

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 22

Mitigation Recommendations

TECHNICAL DIVE-IN

Overflowing the heap

Figure 18 illustrates the state of the heap
before and after we overflow the dns_entry
->ptr_name buffer. In our case, dns_entry is
allocated right above the top bin and is adja-
cent to it. We choose the length of the payload
(forged DNS resource record data) to overflow
the ptr_name buffer, overwrite the remaining
fields of the dns_entry structure, and
overwrite the metadata of the current top bin.

We choose the payload in such a way that
there is now a fake chunk within the memory
chunk allocated for the dns_entry structure,
and the metadata of the top bin is modified.

Whenever a new memory allocation through
malloc() takes place, the memory allocator will
attempt to use the top bin.

We can set the size field of the top bin
through the overflow, such that the memory
allocator will deem that there is not enough
space, and it will attempt to extend the
top bin. After this extension takes place, the
memory allocator will free the top bin. It will
also attempt to consolidate the freed top bin
with any other adjacent chunks that are also
free. This is where the fake chunk comes into
play: we unset the least

significant bit of the size field of the top
chunk, indicating that the fake chunk is “free.”
By carefully placing addresses within this fake
chunk (forward and backward pointer fields),
attackers can achieve arbitrary memory writes
(e.g., write-what-where6), hijack the control
flow of a vulnerable program, and execute
arbitrary code. These are the elements of the
classic heap exploitation technique sometimes
known as “unlink() technique”7.

Figure 18 – The state of the heap after buffer overflow (CVE-2020-25928)

6 https://cwe.mitre.org/data/definitions/123.html
7 http://phrack.org/issues/57/8.html

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 23

Mitigation Recommendations

TECHNICAL DIVE-IN

When crafting the value for size of the top bin,
we must ensure that the following conditions
hold:
1. The least significant bit of size must be set

to zero. This indicates that the previous
(fake) chunk is free.

2. The value of size must be bigger than the
minimal possible chunk size (16 bytes).

3. Let new_size be the size of the memory
(masked by the malloc_align_mask) that will
be allocated during the next malloc() call
that occurs after we create the fake chunk
and modify the metadata of the top bin
with overflow. The following condition must
hold: size < new_size.

In particular, the last condition above means
that we must carefully choose the value of size
with respect to the next malloc() call that
happens within the execution path that we
wish to hijack. To satisfy the above conditions,
we have chosen the value of 0x000000a2.

Figure 19 shows the function call that we aim
to hijack: Because we have sent a malformed
DNS response, DNS lookup will fail, and the
function gio_printf() will be called to log the
corresponding error. When this function is
called, a string buffer is allocated on the heap,
line 18. Because this memory allocation should
happen in the top bin, malloc() will create a
new top bin and will then free the old top bin,
consolidating it with the fake “free” chunk.Figure 19 – gio_printf() is called when the DNS lookup fails

To achieve our goal, we need to make sure that
only the top bin is available for the allocation
of the dns_entry and the next memory
allocation. As the heap memory is volatile, we
cannot always meet this condition without
shaping the heap in a certain way. These
techniques are out of scope of this proof-of-
concept; therefore, we always rely on the initial
state of the heap after we reset the target
device (which is always predictable in our case).

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 24

Mitigation Recommendations

TECHNICAL DIVE-IN

Let P be the pointer to fake chunk that we
control through the buffer overflow (BK and
FD are just some temporary pointers in the
stack). Considering that the vulnerable
NicheStack device we used for our exploit has
a 32-bit CPU, the unlink macro boils down to
the following two operations:

In layman’s terms, it means that the memory
contents at whatever address we place into
the forward pointer of the fake chunk plus
12 bytes will be overwritten with whatever
address we place into the backward pointer of
the fake chunk. As an undesired side effect,
the contents of the memory at the address
that we place into P->bk plus 8 bytes will be
overwritten with P->fd.

The memory allocator in the analyzed versions
of NicheStack does not include security checks
such as “Safe-Unlinking”8 (in contrast with, e.g.,
newer versions of glibc9). Because of this, and
since we have full control over the pointers
P->bk and P->fd through the buffer overflow,
the unlink macro allows us to achieve
arbitrary memory writes. We use this to hijack
the control flow from gio_printf() as follows:
1. In the overflow payload, we specify the

value of P->fd to be the stack address that
holds the return address for the gio_printf()
call, minus 12 bytes. For example, if this
address is 0x20012c18, we should put
0x20012c0c.

2. In place of P->bk (the next address within
fake chunk), we put the address at which
our shellcode begins (e.g., 0x20014b4d).

3. The undesired side effect of unlink will
overwrite the contents of “P->bk+8” with
P->fd, slightly corrupting our shellcode. To
alleviate this, we must begin the shellcode
with a “jump” instruction that will continue
the shellcode execution after the corrupted
part.

The result of these manipulations will
overwrite the return address of the gio_
printf() stack frame so that it will not return
to its original callee, but instead, our shellcode
will be executed.

*(P->fd + 12) = P->bk
*(P->bk + 8) = P->fd

 8 https://research.checkpoint.com/2020/safe-linking-eliminating-a-20-year-old-malloc-exploit-primitive/

 9 https://www.gnu.org/software/libc/

To join the freed top bin and the fake “free”
chunk, the memory allocator will use the
unlink macro (shown in Figure 20). This macro
simply removes a chunk node from the double
linked list of free chunks. Because we have
unset the least significant byte of the size field
of the top bin, the memory allocator will deem
that the fake chunk we have inserted before is
free, and it will attempt to unlink this chunk.

Figure 20 – The unlink macro

https://research.checkpoint.com/2020/safe-linking-eliminating-a-20-year-old-malloc-exploit-primitive
 https://www.gnu.org/software/libc

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 25

Mitigation Recommendations

TECHNICAL DIVE-IN

7.3. The shellcode

The goal of our shellcode is to force the
vulnerable device to communicate with other
devices over the network. To do so, we use the
available network API in NicheStack, namely
the functions t_socket(), t_connect(), t_send(),
and t_sendto(), which can be used for
establishing a TCP connection with another
network endpoint and for sending data to it
over the TCP protocol.

We structure the shellcode in the following
way:

We first include bytes for initializing the
sockaddr_in structure that will be passed
into the t_connect() function: the fields of this
structure contain necessary parameters for
establishing a TCP connection (e.g., target IP
address and port).

Next, we include the assembly code that
executes the above functions to establish a
TCP connection and send a TCP data packet
to other devices (t_socket() -> t_connect()
-> t_send() -> t_socketclose()). Since we do
not implement any persistence on the target,
we include an additional call to t_reset() that
resets the NicheStack device after the attack is
performed.

Next, we attach a byte sequence that ensures
that the overwritten members of the
dns_entry structure will not cause any trouble
by crashing the memory allocator
unexpectedly (“Fix members”). After this comes
the first instruction that is executed after
hijacking the return address: We include a
jump assembly instruction that will move the
current instruction pointer to the first network
API function call within the shellcode (e.g.,
“t_socket()” call). This jump instruction is added
to overcome the undesired effect of the unlink
macro, which will corrupt part of our shellcode,
so we can keep the actual shellcode and the
shellcode pointer separate in this way (see
Section 7.2). Finally, we include the
crafted heap metadata that includes the fake
free chunk and the fake top bin (see Section
7.2), as well as the data that will be sent to the
other network device over the TCP protocol
once we hijack the control flow of the
NicheStack device (“TCP payload”).

Figure 21 – Shellcode structure

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 26

Mitigation Recommendations

TECHNICAL DIVE-IN

8. Technical Dive-In #3:
HTTP-Based Exploitation
(CVE-2021-31226)

Alongside the DNS-based exploitation that was
explained thoroughly in the Section 7, we also
wrote a preliminary PoC for the HTTP-based
RCE (CVE-2021-31226) using similar techniques.
Exploitation via HTTP is a good option when
the InterNiche HTTP server is enabled on the
victim device. It has the benefit of not requiring
a DNS request, since the exploiting packet is
sent directly to the HTTP server.

Note that the PoC was tested on the same
physical hardware that was mentioned in
Section 7, so the same exploitability caveats
apply in this section as well.

The code shown in Figure 22 goes over the
request URI searching for a “?” character that
will terminate requri. It also puts a null
terminator when encountering a character out
of the expected range, which is > 0x20 ASCII.

Eventually, the HTTP packet is queued to
further processing by the wbs_post() function
shown in Figure 23. Inside wbs_post(), the
code looks for the “Content-Type:” string,
possibly followed by spaces with a value of
“multipart/form-data”. Then, header_struct
->upload gets a fixed-size heap allocation of
0xEC bytes (line 37).

8.1. Vulnerability details

CVE-2021-31226 occurs during the parsing of
the HTTP Request URI field in the function
ht_readmsg(). After making sure the packet
has a valid “Content-Length” header value, the
parsing logic gets the pointer to the request
URI (requri) by calling ht_nextarg() on the
HTTP request’s buffer and stores this pointer in
the header_struct->fi->requri. For
clarification, the request URI refers to the part
highlighted in red of the entire URI (path +
query string):

https://example.org/path/to/
file?param=42#fragment

Figure 22 – ht_readmsg() excerpt

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 27

Mitigation Recommendations

TECHNICAL DIVE-IN

Figure 23 – wbs_post() excerpt

Figure 24 – wbs_post() excerpt, showing the unlink operation

Upon successful allocation, there is a check in
line 47 that makes sure requri starts with ‘/’
and holds at least one more character. Then, in
line 48, the vulnerable strcpy is called, copying
the requri string (whose size was never
checked) to the header_struct->upload
->cgifname field, which is at offset 0xB8 inside
the 0xEC allocated header_struct->upload
buffer. This means that a requri string of
more than 52 bytes would cause a heap
overflow. Note that due to the limitations on the

input buffer (only characters above 0x20 can be
used), we cannot make the previous size of the
overflown buffer point directly to our fake chunk
(and thus our hacked FP/BP values). Therefore,
the PoC relies on spraying the device’s heap
memory with controlled packets containing fake
heap chunks (after the device is reset) and then
using big negative values as the previous size to
make the resulting pointer end up at one of our
previously stored fake chunks. In these fake
chunks, we are free to specify any FP/BP values
as before, and exploitation is identical to
Section 7.2.

8.2. Exploiting the vulnerability

The HTTP-based scenario can be exploited in
a similar way as the DNS-based scenario. In
the wbs_post() function, there is a reachable
npalloc() call shortly after the strcpy() call that
causes the overflow, as shown in Figure 24.

When setting up the heap similarly to Figure
18, the npalloc() call will cause an unlinking
operation, which leads to an attacker-
controlled arbitrary overwrite.

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 28

Conclusion

9. Conclusion – Lessons Learned
and the Way Ahead

9.1. Vulnerability discovery

After more than a year of Project Memoria,
we can say that many of the vulnerabilities in
embedded TCP/IP stacks are very predictable.
We have distilled a large body of knowledge of
existing anti-patterns in TCP/IP stack
implementations, which can be used as a guide
for researchers and developers to find and fix
new vulnerabilities.

In AMNESIA:33, we first presented statistics
about affected components and discussed
initial anti-patterns. In NUMBER:JACK, we
showed how a single simple issue (predictable
ISN generation) tends to repeat across many
stacks. In NAME:WRECK, we showed the
same for more complicated patterns on DNS
and started paving the way to automation
by sharing static analysis queries that help
developers locate potential issues in their
code. Since then, more similar vulnerabilities
have been found by other researchers, such as
CVE-2021-26675, affecting a component used
in Tesla cars.

In INFRA:HALT, we look back at all the previous
anti-patterns and see most of them repeating
in a single stack. We also look further into
automated vulnerability discovery by working
with JFrog’s analysis platform.

9.2. Vulnerability disclosure

The disclosure process for INFRA:HALT took
more than 9 months from initial contact with
HCC Embedded on September 22, 2020, to
public announcement. It took 17 days to get an
initial response from HCC Embedded, weeks
to convince them of the issues, as well as
several months to discuss the vulnerabilities
and patches (which were postponed from
January to March to May 2021) and for the
coordinating agencies to notify downstream
device vendors.

This extended timeline – more than three
times the industry-accepted 90 days –
reflects the current process of coordinated
vulnerability disclosure (CVD) applied to large-
scale issues affecting embedded devices.
Many vendors of embedded technology have
software that is decades old and in different
stages of support, from completely supported
to end-of-life, with several levels of contracted
support in between.

We believe that the cybersecurity community
is at a turning point, and soon automated
vulnerability discovery techniques will become
more common, which should make finding
very large-scale vulnerabilities, such as those
affecting TCP/IP stacks, faster and more
frequent. All these vulnerabilities, however,
will have to be disclosed, mapped to affected
devices and mitigated.

https://github.com/Forescout/namewreck/tree/main/joern-queries
https://www.forescout.com/research-labs/namewreck/
https://git.kernel.org/pub/scm/network/connman/connman.git/commit/?id=e4079a20f617a4b076af503f6e4e8b0304c9f2cb
https://www.youtube.com/watch?v=krSj81thN0w
https://www.youtube.com/watch?v=krSj81thN0w

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 29

Conclusion

At the same time, there is no transparency
into software components used by devices, so
manually understanding if a device is affected
takes a long time.

A major drawback of the current CVD process
is that it misses some key elements. Although
the process involves several collaborating
parties (such as researchers finding the
vulnerabilities, vendors patching them and
CERTs coordinating the efforts), there are
usually no asset owners involved, and there is
no public information about the security
response process of software and device
vendors.

The lack of involvement of asset owners means
that researchers face a dilemma: They must
choose to disclose privately to a few owners
they may know are affected or withhold the
information until everything becomes public
(assuming the vendor will want to fix the issues
and has agreed to a disclosure date). Clearly,
neither choice is in the best interest of the
community at large.

The lack of public information about vendor
security maturity means that researchers
never know, when approaching a vendor, how
their work will be received and how long the
process will take. Mature vendors often
welcome security research and are used to
working with the different parties involved in
CVD. Vendors that are new to the process may
be hostile toward security research and have
difficulties in understanding that the CVD
process is helpful for a large set of
stakeholders.

Both issues combined mean that there are still
not enough incentives for software vendors
to efficiently and effectively deal with the
consequences of insecure software, which
puts their customers in danger. Taking steps
to bridge these gaps would put pressure on
vendors and lead to more secure software.

9.3. Identifying vulnerable devices

After AMNESIA:33, we realized that security
issues in TCP/IP stacks and applications built
upon them have large implications. Hardware
and software vendors often include third-party
software components into their products years
before vulnerabilities are found in one of these
upstream components. Successful vulnerability
patching depends on whether each vendor
can quickly identify which of their products are
affected.

There has been a plethora of industrial and
academic research on tracking security
issues in third-party software dependencies.
However, they cannot be easily applied for
embedded systems for several reasons:

• Lack of Software Bill of Materials (SBOM)
for embedded systems. SBOMs can be
used to identify the usage of vulnerable
components and versions in specific
devices. Software package management
systems may help to construct SBOMs;
however, this mainly applies to open-source
software, and there is no widely adopted
package manager for C (especially, in the
embedded systems domain).

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 30

Conclusion

Surely, there was not one a year ago when
many of the software components of
embedded systems used nowadays were
released. Not every vendor might have kept
SBOM records of hardware/software
released over the years, and not every
vendor may agree to share this information
openly.

• Software decay and evolution. The
vulnerable upstream software component
may be heavily modified over the years for a
multitude of reasons. Moreover, the
boundaries between different versions of
TCP/IP stacks and their components may
be often blurred, which may happen due
to intellectual property acquisition, lack
of ownership and support or the fact that
downstream vendors may heavily modify
the original code to meet their custom
requirements. In other words, there is no
easy way of comparing the vulnerable
upstream code with the vendor’s code in
question. For closed-source systems, this
option may even be unavailable.

• Long half-life of vulnerabilities. Many
vulnerabilities are introduced into software
projects at the very beginning of their
existence, while embedded systems have
very long lifespans. Many devices may be
parts of critical infrastructure for years after
they reach the end of their support lifecycle.
This makes it even more challenging to
identify the affected devices and issue
patches for them.

We have been asked by various vendors, who
suspected they could have included vulnerable
TCP/IP stacks and applications into their
codebases, to help them to identify vulnerable
devices in their product lines. This highlights
the importance of having an effective and
scalable approach to this problem.

Our goal was to find a way to identify the
presence of the vulnerable upstream
component – a TCP/IP stack in question.
Having such a tool in their arsenal, device
vendors and network operators can focus their
attention on only a subset of devices rather
than examining each device individually.
Therefore, we have released our open-source
detector tool10 that allows us to identify
whether a particular embedded TCP/IP stack is
used in a device.

The tool is inspired by several well-known
active network fingerprinting tools, such as:
nmap11 and xprobe12. Since the same
embedded TCP/IP stacks can be a part of
different real-time operating systems,
traditional OS fingerprints used in nmap (e.g.,
Time-to-Live and initial TCP Window size
values) may be unreliable. We observed that
some fingerprints correspond to values
typical to most Unix/Linux systems, and all
devices running embedded TCP/IP stacks that
we tested were only recognized as such
systems.

10 https://github.com/Forescout/project-memoria-detector
11 https://nmap.org/
12 The first version, which is described here: https://ofirarkin.wordpress.com/xprobe/

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 31

Conclusion

Therefore, we have studied
implementations of several prominent
embedded stacks, including NicheStack, and
came up with several key observations that
allow to differentiate them:
• ICMP quirks. After having looked at several

implementations, we realized there may be
significant differences in which every stack
reacts to malformed ICMP packets. For
example, some of the stacks will reply to an
ICMP echo packet that has an incomplete
header (yet the number of absent bytes
that will be tolerated differ). This essentially
seems to be the most accurate identification
method, provided that a stack in question
exhibits any quirks.

• TCP quirks (Urgent flag handling). We also
have noticed that several stacks have quite
different ways of handling TCP packets with
the Urgent flag13 set. We also fall back to
some of more traditional approaches (e.g.,
looking at the sequence of TCP options),
which in some cases can be quite unique, as
well as use the combination of Window/TTL
values (same as nmap).

• Banner grabbing. Embedded TCP/IP stacks
are often shipped with a set of pre-built
applications such as HTTP, FTP client/server,
or SSH server, unlike traditional operating
systems that typically have a single TCP/IP
stack but may run a different application on
top.

NicheStack is not an exception (see Figure
1); therefore, banner grabbing can be an
efficient way to identify the presence of the
underlying TCP/IP stack even if a stack does
not exhibit any implementation quirks and
every other fingerprint fails.

We discovered that NicheStack has certain
ICMP quirks, as well as several applications
with specific banners (e.g., FTP server,
webserver, and a Telnet server) that it may be
shipped with (see Figure 1). This information
can be used to fingerprint the stack with a
decent degree of certainty. For example, Figure
25 shows the output of our detector tool after
we run it against one of the devices in our lab
(using standard and verbose modes). From
the output of the verbose mode, we can see
that this device matches the ICMP fingerprint,
and it happens to run a webserver that has
a matching banner. This combination of
fingerprints allows us to conclude that this
device may indeed run NicheStack (which
is the TCP/IP stack that it actually runs). We
are constantly working on improving the
capabilities of our detector.

13 https://datatracker.ietf.org/doc/html/rfc6093

RESEARCH REPORT | INFRA:HALT |

FORESCOUT RESEARCH LABS 32

Conclusion

Figure 25 – Results of the open-source fingerprinting tool against a device in the lab

9.4. Vulnerability mitigation

Given the status of vulnerability discovery and
disclosure, there is a need for several levels
of vulnerability mitigation in the IoT/OT world,
from improving the code quality of embedded
software to hardening network configurations.

Both software and device vendors need to
adopt secure software development lifecycles
and improve their security response processes.
As we mentioned in Section 9.1, automated
vulnerability discovery is not only for
security researchers but mainly for software
developers to eliminate bugs and to improve
the products they ship.

Also, as mentioned in Section 7, we are still
not seeing basic mitigation techniques being
applied in the IoT/OT world, such as: stack and
heap canaries, address space randomization,
no-execute memory pages, and format string
attack mitigations.

In the IT world (PC, server and mobile
ecosystems), these techniques have been the
standard for decades. It is unacceptable to
keep ignoring them when modern processing
power enables using them fully without
sacrificing any functionality.

The reality is that this will take a long time,
which means there will still be insecure devices
in critical networks in the foreseeable future.
Asset owners must ensure that these devices
are not easily accessible by attackers and that
network traffic is closely monitored to detect
problems at the earliest stages.

	9. Conclusion – Lessons Learned and the Way Ahead
	9.1. Vulnerability discovery
	9.2. Vulnerability disclosure
	9.3. Identifying vulnerable devices
	9.4. Vulnerability mitigation

	5. Mitigation Recommendations
	5.1. For network operators
	5.2. For device vendors
	5.3. For the community

	6. Technical Dive-In #1:
	An Example of Automated Vulnerability Discovery
	7. Technical Dive-In #2: DNS-Based Exploitation (CVE-2020-25928)
	7.1. Vulnerability details
	7.2. Exploiting the vulnerability
	The memory allocator
	Overflowing the heap

	7.3. The shellcode

	8. Technical Dive-In #3: HTTP-Based Exploitation (CVE-2021-31226)
	8.1. Vulnerability details
	8.2. Exploiting the vulnerability

	4. Impact
	2. Main Findings
	2.1. What is NicheStack?
	2.2. Why analyze NicheStack?
	2.3. Analysis and findings

